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Abstract The optimisation of parameters is investigated

for the compositional analysis of nanometre-sized particles

embedded in a matrix by energy-filtered transmission

electron microscopy. The specific example of Cu-rich

particles in a Fe matrix is used both to model and to

explore the experimental limits of detection and charac-

terisation. Modelling of alternative procedures for back-

ground extrapolation as a function of the number of

pre-edge windows confirmed that greater accuracy in a

fixed analysis time is achieved by using more than two pre-

edge windows. Further modelling investigated the effects

of noise, drift and instrumental blurring of images on the

accuracy of particle size and composition measurements.

Correction factors were generated for ranges of these

artefact amplitudes. The corrections were then applied to

experimental data and shown to be both realistic and

effective. Determination of particle radius below 1 nm was

demonstrated.

Introduction

The detection and characterisation of Cu-rich clusters and

particles induced by neutron irradiation in ferritic steel

components has important consequences for the safety of

nuclear reactor pressure vessel integrity [1–3]. Such indi-

vidual clusters are typically ~1 nm in size and can usually

only be directly imaged by Position Sensitive Atom Probe

analysis (POSAP) [4–6]. The particles can also be char-

acterised by bulk material measurements using Small

Angle Neutron Scattering, Positron Annihilation and

Electrical Resistivity [4, 7]. The various techniques

sometimes provide conflicting information concerning the

size distribution, number density and composition of par-

ticles that detract from estimates of component lifetime

required by nuclear regulatory authorities [8]. Recently,

advances in Energy Dispersive X-ray Analysis [9, 10] and

Electron Energy-Loss methods in the transmission electron

microscope (TEM) have improved detection limits and

might soon become competitive, complementary methods

to POSAP for analysis of these particles [11].

There is a fundamental problem with extracting quan-

titative compositional information from small-embedded

particles because the matrix contributes to the signal. In our

previous work we made an assumption that the particles

were spherical in shape to overcome this difficulty and then

described a procedure to confirm the assumption and allow

measurement of the Fe content of the Cu-rich particles

[12]. The largely spherical nature of the particles is well

documented for thermally aged Fe–Cu alloys in the case of

the larger (diameter > ~5 nm) particles which have trans-

formed from their initial b.c.c. structure into a 9R structure

that can be directly imaged using HREM [2, 13–15]. The

smaller, un-transformed b.c.c. particles, however, cannot

be directly imaged by HREM although the associated strain

field can sometimes be seen using diffraction contrast

methods [16]. It is the potential for using EFTEM for direct

imaging of all the particles, both b.c.c. and transformed 9R,

and for measuring their Fe content that is the subject of this

paper.

The EFTEM imaging procedure requires the recording

of at least two images of the same specimen area, using
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energy windows below and one above the selected ioni-

sation edge, to generate a jump-ratio image or a map with

intensity proportional to the elemental concentration [17].

The spatial resolution and elemental sensitivity within an

EFTEM image then depend on many factors including:

composition of the sample, choice of ionisation edge, data

acquisition time, energy window width, collection angle,

sample thickness, the spherical, chromatic and diffraction

aberrations, sample drift and spectrometer instabilities.

These are well documented in the literature [18–30]. In

previous publications, the experimental optimisation of

some of these parameters has been described for EFTEM

imaging of the Cu-rich precipitates [12, 31]. We also

described the use of series of larger numbers (>3) of

EFTEM images for generating the elemental maps. A

fundamental issue is that, although the signal intensity

and signal to noise can be improved by increasing

parameters such as the acquisition time, number of ima-

ges, energy window width and collection angle, these

changes introduce additional image drift and correlation

problems while degrading fundamental image resolution

[18, 21, 23]. A conclusion from that work was that the

sample drift could be measured from the image series and

used to assess the degradation of both resolution and

compositional accuracy. The modelling work described

below follows from that observation, with a specific aim

of correcting particle measurements for drift, fundamental

resolution limits and signal to noise.

Experimental analysis procedures

The data acquisition and analysis procedures have already

been described in detail elsewhere and only the major

features will be summarised here [12].

Samples of Fe–Cu were heat-treated to nucleate a dis-

tribution of Cu-rich particles and later electro-polished for

characterisation in a JEOL 2200FS TEM with an in-col-

umn filter operated at 200 keV accelerating voltage. EF-

TEM image series were recorded using specifically

designed Digital Micrograph software scripts. Up to 40

images were recorded at 10 eV energy loss intervals using

a 10 eV energy window width and a signal collection angle

(b) of 12.1mrad within the energy-loss range between

640 eV and 1040 eV to include the Fe-L23 and Cu-L23

edges of interest. Further scripts allowed acquisition of

image series with changing energy loss below the ionisa-

tion edge but repeated acquisition at a specific 10 eV en-

ergy window just above the edge. The position of the

window was chosen to optimise the SNR, as described in

[32]. This new feature enabled an improvement in the post-

edge signal collected in any given time, compared with

collecting the same number of post-edge images over a

range of energy-loss values, because the maximum signal

occurs close to the Fe-L23 and Cu-L23 edges. Foil thick-

ness, t, maps were obtained from low-loss images using

standard procedures [17]. Various acquisition times were

compared.

Image correlation was achieved to an accuracy of one

pixel (i.e. 0.1 to 0.3 nm, depending on image magnifica-

tion) [33]. Displacements between consecutive images

were used to estimate the degradation of image resolution

by drift [12, 31]. Both Fe and Cu elemental maps were

generated using various numbers of pre-edge maps fitted to

a simple AE)r power law.

The particles were revealed either as dark features on a

brighter background (Cu-L23 image) or as bright features

on a dark background (Fe-L23 image). A comparison of the

signal-to-noise (SNR) and signal-to-background (SBR)

ratios of the two corresponding maps is described later.

Analysis of the shape of each particle was performed by

comparing the measured intensity profile across the particle

diameter with the corresponding theoretical profile for a

spherical particle given by Eq. 1.

I ¼ Aþ 2k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 � x2 � y2
p

ð1Þ

The particle, radius R, is centred at the origin of

co-ordinates. A and k are scaling parameters. The intensity

at all adjacent points in the matrix has a constant value

provided the foil thickness is uniform. In the present

investigation, any residual Cu in the Fe matrix had a

concentration � 1% and could be ignored. Hence, for the

Fe-L23 elemental map, A was the matrix intensity from a

specimen of thickness t and the parameter k was equal to

)A/t if the precipitate contained no Fe. For the Cu-L23

maps, A = 0 and k had to be determined by separate

calibration.

Confirmation of particle sphericity was made by fitting

Eq. 1 to four profiles through the precipitate (at 45� rota-

tions) using a maximum likelihood fitting procedure [34] to

confirm that a constant radius value was obtained within

experimental error. The reduction in intensity was then

integrated over a square area containing the particle to

determine a more accurate measurement of the sphere (i.e.

using all the intensity loss rather than a small proportion

along a diameter). It should be noted that local differences

in thickness can limit the accuracy of this measurement. An

annular integration area around the precipitate is suggested

for future measurements. The line profile intensity mini-

mum provided a measurement of the remaining Fe in the

particle. When the profile width and depth simultaneously

fitted Eq. 1 then the Fe content was zero. If the particle

appeared to be circular (i.e. assumed to be spherical) but

the experimental profile was shallower than predicted then
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the Fe content was found by scaling the experimental and

theoretical profiles. (NB The Fe map really shows the ‘non-

Fe’ distribution rather than a Cu distribution, because other

alloying and impurity elements can be incorporated into the

particles. However, this does not affect the accuracy of the

analysis of the Fe content.)

An alternative measurement of particle size was also

derived from the full-width, half-maximum (FWHM) of

the line profiles, although there is no simple relationship

between the actual radius and the FWHM value.

The SNR for the Fe-L23 maps was measured as the ratio

of the standard deviation of the pixel intensity at the fitted

profile minimum to the average pixel intensity at the

minimum; the SBR was measured from the average matrix

intensity to the profile minimum intensity. For the Cu-L23

maps, the SNR was measured as the ratio of the standard

deviation of the pixel intensity at the fitted profile maxi-

mum to the average pixel intensity at the maximum and the

SBR from the profile maximum intensity to the matrix

intensity.

Modelling procedures

In the ‘‘traditional’’ 3-window technique [17], two images

are acquired before the edge and used to extrapolate the

background to the energy of the single post-edge image.

Although this method has some computational advantages

when fitting to a power-law formula, especially if the

windows are contiguous and have the same width, it still uses

the minimum possible number of data points required to fit a

curve, i.e. two. Accuracy can be poor when the images are

noisy and solutions have been proposed to overcome this,

such as the use of averaged fitting parameters or, when the

background cannot be modelled with the traditional power-

law, polynomial fits or maximum likelihood methods

[35–37]. For all models there will still be an uncertainty in

the extrapolation of the background [17, 18], but comparison

of the absolute accuracy of different methods is not

straightforward. The accuracy of background fitting is

expected to improve as both the number of pre-edge data

points and the SNR increase. Experimentally, however, both

increase the total acquisition time and, therefore, drift.

In this project, a modelling investigation was undertaken

to assess the accuracy and time-efficiency of strategies for

background extrapolation that used different numbers of

pre-edge windows containing different levels of noise. The

modelling assumed a power law pre-edge continuum dis-

tribution, aÆE-r, with a and r the fitting parameters, although

any background shape could be used in principle, and that

all the images were perfectly cross-correlated.

Once the background was artificially generated and

scaled to a selected intensity, corresponding random

(Poisson) noise was added to each energy bin (window)

value in the ‘spectrum’. Then, two or more fitting points,

equally separated by D(E), were selected and a best-fit

power-law curve calculated using the least-squares method.

The best-fit power law was then used to extrapolate the

value at a contiguous point D(E) in energy above the

highest energy value used for fitting. Finally, the extrapo-

lated value was compared with the original theoretical

value at that energy and the relative error of the fitting

measured. This procedure was repeated several hundred

times until a smooth distribution of error against noise

intensity was obtained. Results are described in the next

section.

The effects of image drift, image blurring by funda-

mental electron optical limits and SNR were assessed by

modelling the EFTEM appearance of particles over a wide

range of these three variables. The radii of the modelled

features were then determined by treating the results in the

same manner as the experimental particle images, i.e. by

fitting Eq. 1 to the modelled data using the same maximum

likelihood algorithm and by measuring the FWHM.

In the previous report it was shown that, once the sample

had been allowed to stabilise in the microscope, drift

during the data recording was random and could be

approximately quantified over many images by a normal

distribution in two dimensions, with a magnitude related to

the average displacement between successive images; such

drift distorts each experimental circular image into an oval

[12]. A theoretical Fe-L23 image was generated from Eq. 1

for a particle with a nominal diameter of 100 pixels, rather

than an absolute value in nanometres. By defining drift and

blurring amplitudes also in pixels, rather than absolute

values, all generated results were then normalised for

subsequent general application. A random number gener-

ator was then used to generate a magnitude and direction of

drift and the corresponding distorted image calculated from

the perfect image. This procedure was repeated with a

different amplitude and direction and the intensity added to

the first. By aggregating 100 such images, the average

effect of blurring due to drift was calculated. This proce-

dure was repeated for a range of drift distribution

amplitudes between 0 and 150 pixels.

The resolution limit in an EFTEM map is determined by

the diffraction limit (i.e. the accelerating voltage), the

spherical and chromatic aberration coefficients of the

objective lens, the signal collection half-angle, the width of

the energy window and the energy loss and the ‘de-local-

isation’ of the signal [18–30]. A theoretical point source in

the sample would be blurred by these parameters. The

method of Krivanek [21], with the appropriate experi-

mental and microscope parameters for the current investi-

gation, was used to determine the magnitude of the

blurring. Each pixel of the map, blurred by a specific drift
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amplitude, was then treated as a point object and blurred by

convolution with a 2-dimentional Gaussian distribution of

width determined by a specified resolution limit. The

convolutions were repeated for resolution values in the

range 0–150 pixels for each of the aggregated drift

amplitude images to generate a matrix of images blurred

and ‘drifted’ by up to two times the particle diameter.

Each blurred, drifted image in the matrix was then

degraded by the addition of an appropriate amount of

random Poisson noise corresponding to a specified, mean

signal intensity to simulate the effect of varying the data

acquisition time and beam intensity. The noise at each

pixel was generated using a random number generator. The

whole procedure was repeated on each image in the

2-dimensional matrix for a range of SNR, to generate a

3-dimensional array of images.

Each of the images was then processed as though it was

an experimental image to determine the FWHM diameter

and the maximum likelihood estimate of the diameter. The

difference between the true value (100 pixels) and these

measured values were plotted against the three modelling

variables.

Results

In Fig. 1, the systematic error in background extrapolation

versus the noise level of the data is compared for three

different methods each using windows of a constant energy

width: (i) the conventional three-window method using two

pre-edge windows for background fitting and an acquisition

time t for each window, (ii) the same as (i) but doubling the

time of acquisition and (iii) three pre-edge windows with

acquisition time t.

It is seen that the use of only 2 pre-edge windows pro-

duces the worst extrapolation error. The effect of either

doubling the acquisition time for the same two windows or

including an extra pre-edge window with the same time, s,

improves the accuracy of the fitting substantially and by

similar amounts (Fig. 1). However, doubling the two pre-

edge window acquisition time requires a total acquisition

time of 4s, while using 3 pre-edge windows only requires

3s. Thus, it can be seen that the use of 3 pre-edge images is

the most economic procedure. Based on this modelling, an

assumption was made that, for a given total acquisition

time and noise level, the greatest accuracy of background

estimation would be achieved using several pre-edge

images rather than just two. This strategy was use for the

experimental results described below.

Cu (Fig. 2a) and Fe (Fig. 2b) elemental maps of the

same area were used to assess which was the more suitable

for composition measurement; i.e. which gave the better

sensitivity for a given data acquisition time. Two consec-

utive 10 eV pre-edge windows were used for background

subtraction. Several of the very large Fe-deficient (dark)

features revealed in Fig. 2b.were not present in Fig. 2a and

these were not the Cu-rich precipitates of interest. They

were likely to be other types of precipitate often present in

thermally aged ferritic steels, such as carbides. Intensity

profiles along the diameter indicated for the round particle,

bright in Fig. 2a and dark in Fig. 2b, are presented

in Fig. 3. Superposed on the intensity profiles are the
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Fig. 1 Systematic error in the determination of the post-edge window

background for 3 different methods

Fig. 2 (a) Cu-L23 and (b) Fe-

L23 elemental maps of the same

area of sample. The line through

the largest particle in (a)

indicates the location of the

intensity profiles shown in

Fig. 3
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maximum likelihood (ML) best fits of the data to Eq. 1 and

these were used to measure the SNR, as defined earlier.

The acquisition parameters and the measured SNR are

listed in Table 1. Although the SNR is very similar for the

two maps, the Cu map was generated using longer data

acquisition times (50 s per window compared with 20 s)

and a larger energy window (40 eV compared with 10 eV)

than the Fe map, thereby increasing drift and chromatic

blurring. Hence, the use of the Fe deficit maps is to be

preferred rather than the Cu maps. The thickness was

measured using a t/k thickness map [17] and found to be

~30 nm in this area. A 10% uncertainty is expected in this

sort of measurements.

Having established that, for a given total acquisition

time, the sensitivity would be optimised using Fe-L23

mapping together with background subtraction using mul-

tiple pre-edge windows, the detection limit for the Cu-rich

particles was assessed. An initial characterisation of the

drift revealed that it was random in direction and of

approximately 0.1 nm in modulus for 20 s acquisitions.

Under these conditions five 10 eV pre-edge images were

acquired (660–710 eV) and ten 10 eV post-edge images,

all at 720 eV. A 12mrad objective aperture was used with a

beam current of ~29 nA. All the images were cross-cor-

related and aligned in the way described by Schaffer [33].

The 10 post-edge images were averaged to be compatible

with the pre-edge images. A power-law curve was used to

fit the background and the resultant Fe elemental map can

be seen in Fig. 4.

In Fig. 4 there are several visible precipitates with sizes

in the range 1.5–2.0 nm. The resolution was assessed from

line profiles (Fig. 5) across the precipitates labelled 1 and
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Fig. 3 Measured intensity profiles and maximum likelihood best fit

curves along the particle diameter indicated in Fig. 2 for the Cu and

Fe elemental signals

Table 1 Parameters used for the generation of maps in Fig. 2

Fe-L23 map Cu-L23 map

Energy loss window (eV) 720 920

Energy slit width (eV) 10 40

Collection half-angle (mrad) 12 12

Instrument blurring (nm) 0.7 1.2

Image acquisition time (seconds) 20 50

Number of pre-edge windows 2 2

Number of post edge images 1 1

Parameter k in Eq. 1 20 60

Standard error of channel counts 50 150

Noise % (SNR) 20 (5.0) 22 (4.6)

Fig. 4 Fe-L23 elemental map showing a distribution of Cu-rich

particles with diameter < 5 nm

Fig. 5 Intensity line profiles through the two particles numbered in

Fig. 4
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2. Both show a FWHM diameter between 1.5 nm and

2.0 nm and a SNR = 4, close to the acceptable value for

discrimination [38] and sufficient to attempt quantification

of the Fe content [12]. The thickness was measured using a

t/k thickness map and found to be ~27 nm in this area

However, the effects of drift and instrumental blurring, in

addition to SNR, ideally require assessment and correction

using the modelling results below.

The degradation of an ideal precipitate image in Fig. 6a,

generated from Eq. 1, with a diameter of 100 pixels, after

blurring by an instrument blurring parameter of 50 pixels is

shown in Fig. 6b: the edge of the particle image is clearly

smoothed under these conditions. Line profiles across a

particle image after convolution with blurring functions of

widths up to 100% of the 100-pixel particle diameter are

shown in Fig. 7. The distortion of the same ideal particle

image by drift with average magnitude equal to the particle

radius during acquisition is shown in Fig. 8a. The super-

posed images of 100 such images, each with a drift

amplitude randomly selected from a Gaussian distribution

of 50 pixels FWHM, and with random direction, is shown

in Fig. 8b. Figure 9 shows line profiles across a series of

images generated with drift amplitude distributions up to

150% of the particle diameter (i.e.150 pixels).

The effect of adding random noise to an ideal image is

illustrated in Fig. 10 which shows the expected result that,

for a given average noise percentage of the maximum ideal

intensity, the measured SNR increases as square-root of the

number of summed images. This verified the integrity of

the simulation algorithm.

The modelling results incorporating these three effects,

in combination, are presented as 3-dimensional plots of the

error in the radius determination against either the drift and

image blurring with no noise (Fig. 11a and c), or noise and

image blurring with zero drift (Fig. 11b and d). In Fig. 11a

and b the radius was determined by maximum likelihood

(ML) fitting to line profiles across the simulated images,

while in Fig. 11c and d the FWHM radius values were

Fig. 6 (a) Ideal particle

intensity calculated from Eq. 1

and (b) after instrumental

blurring

Fig. 7 Modelled intensity profiles showing the increased blurring as

the instrument blurring parameter increases

Fig. 8 (a) Modelled particle

intensity map, assuming a

uniform linear drift during

acquisition and (b)

superposition of 100 maps with

random drift directions from a

single amplitude distribution
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determined from the same set of images. The major

observations to be made from these results are discussed

below.

Discussion

The modelling results from the previous section suggest

that, when the size of the particle is of the same order as the

average drift or the instrument blurring, large imaging

artefacts can occur. It is clear that alternative measurement

methods of the particle radius might lead to different

results. In particular, when the FWHM is used there is a

range of drift and blur values (0 < drift < 110% and

0 < blur < 60%) for which the measured particle radius

is smaller than the actual value (Fig. 12). This occurs

because the image degradation blurs the edges of the par-

ticle image but does not reduce the central intensity sig-

nificantly when the particle radius is much greater than the

instrument blurring parameter. The effect of larger

parameter values is always to enlarge the measured FWHM

size, as one would intuitively expect. The measured ML

radius is always larger than the actual radius except when

the image is very noisy, when occasional negative values

are possible.

It is also observed that the separate combination of noise

with the other two variables is different. In Fig. 11b it is

seen how, in the absence of drift and blurring, the ML best-

fit radius resists perfectly noise levels up to 100% of the

signal intensity, while the FWHM has an error of up to 2%

when the noise is higher than 80%. The ML least squares

fitting method is much more effective than the FWHM

method for minimising the effects of random noise (note

the difference in error scales in Fig. 11b and d). Even when

the SNR ~ 0.33 (noise = 300%, Fig. 11b) the error in ra-

dius is minimal when the instrumental blurring is small

using ML, whereas the FWHM values become very vari-

able. Therefore, the use of the ML least-squares method to

determine the size of the particle is recommended.

The smooth error surface which is generated with zero

noise is more sensitive to instrumental blurring than drift

(Fig. 11a and c). This probably occurs because the elon-

gation of the image in the drift direction is compensated by

a narrowing of the distribution of image intensity (i.e.

image sharpening) normal to the drift direction (Fig. 8).

The overall blurring effect of drift, therefore, is partly

compensated when many randomly drifted images are

superposed, whereas instrumental blurring is always pres-

ent equally in all directions. Surfaces equivalent to those

shown in Fig. 11a and c, but corresponding to non-zero

levels of noise, can be generated for any specific, measured

SNR value. This provides the potential for correction, or

partial correction, of ML radius measurements for drift and

blurring. The correction procedure would have to be iter-

ative because the actual particle radius is unknown, so

initial values of normalised drift and blur parameters would

be estimated from the measured radius, drift and relevant

instrument blur value. Correction would lead to a better

estimate of the radius, leading to modified, more accurate

normalised drift and blur values. Further iterations could be

applied, as required.

The measurement accuracy of the Fe content of a par-

ticle depends on the difference between the ideal profile,

described by Eq. 1, and the minimum depth measured for a

specific measured radius. As the blurring increases relative

to the true particle radius, the profile minimum from a

0%Fe-particle will become shallower. The difference be-

tween the blurred and ideal minima is plotted in Fig. 11e

and f as the percentage error in Fe content as a function of

both noise and instrumental blur (Fig. 11f) and drift and

instrumental blur (Fig. 11e). It is observed that the noise

has little effect on the apparent Fe content until its mag-

nitude is similar to the signal intensity. The instrumental

blurring has a very significant effect, however, while the

drift has an intermediate influence. These observations are

seen more clearly in Fig. 12 where the variation of the
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Fig. 9 Intensity profiles through a series of images such as that in

Fig. 8b as the amplitude increases
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Fig. 11 Percentage error in ML determination of particle radius as a

function of (a) drift and instrumental blur and (b) noise and

instrumental blur. Percentage error in FWHM determination of

particle radius as a function of: (c) drift and instrumental blur and (d)

noise and instrumental blur. Error in measured Fe content of

precipitates as a function of (a) drift and instrumental blur and (b)

instrumental blur and noise. Positive values mean overestimation and

negative underestimation
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error in Fe content is plotted separately for the three

parameters: for each variable parameter the value of the

other two parameters is zero. As discussed in [12], thick-

ness determination is a key issue. The uncertainty in the

thickness determination will ultimately compromise the

accuracy of any Fe concentration calculations. Thickness

will also have a detrimental effect on the elemental map

SNR when it becomes comparable or bigger than the

inelastic mean free path, as stated in [17, 18]. The sys-

tematic percentage error in the estimation of the precipitate

size using ML and FWHM, as well as in the Fe content, are

shown for reference in Fig. 13.

The radius can be measured more accurately and inde-

pendent of the line profile [12] by calculating the size of a

sphere that produces the integrated Fe intensity reduction

over the whole particle. When this integrated radius mea-

surement, rI, is the same as that from the ML line profile,

rLP, then the particle should contain no Fe. However, dif-

ferences will occur when either (i) the particle contains

significant Fe or (ii) the rLP has been blurred, or both. It

becomes more difficult to discriminate between these two

possibilities as the precipitate radius decreases. In princi-

ple, however, the magnitude of blurring can now be

modelled and the two situations discriminated. A correc-

tion for the error in Cu-content can be estimated from the

ML best fit radius and surfaces such as those in Fig. 12b for

the appropriate drift, noise and blur. Any remaining dif-

ference between the measured profile minimum and the

profile minimum corrected for artefacts will be due to the

presence of Fe in the particle.

The ML radii measured in Fig. 4 were 0.84 and

0.99 nm, with drift of only 0.1 nm (~12% and 10%,

respectively), blurring of ~0.7 nm (83% and 70%, respec-

tively) and a SNR~4 (corresponding to noise of 25%).

Referencing the previous results (Figs. 11 and 13), the

blurring will cause by far the greatest error in the mea-

surement of the ML radius. When the effect of any noise

and drift is ignored, ML radius correction factors of ~15%

and ~10%, respectively, can be derived from Fig. 13,

resulting in better estimates of 0.73 nm and 0.90 nm,

respectively, for the radii of the two particles.

As already noted, there are two methods by which the

particle radius can be measured from the maps: (i) from the

ML least squares calculation where the radius, rLP, is

systematically varied until the optimum fit is determined or

(ii) rI, from the difference between the integrated Fe

intensity in equally-sized boxes containing the particle and

the matrix. The latter is more accurate because it is unaf-

fected by blurring and drift. In Fig. 14 a range of experi-

mentally measured rI values are plotted against the

corresponding ML rLP values for the same group of parti-

cles. The data acquisition parameters are listed in Table 2.

Ideally, all points should lie on the line of unit gradient.

Corrections to the rLP values were derived using the

modelling illustrated in Figs. 11 and 12b and the corrected

values are also plotted in Fig. 14. As, expected, the
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corrected values always lie below the measured values and

the relative difference increases as the radius decreases.

Both data sets generally follow the line of unit gradient

although there is some scatter in the radius range above

2.5 nm. The reason for this is uncertain because the

accuracy of fit should improve with increasing radius.

However, the particles could become more facetted as they

grow, or the larger particles might be those that have

transformed from the b.c.c. structure to the 9R phase and

begun to exhibit some faceting. Both the radius distribu-

tions below 2.5 nm closely follow the unit gradient line but

the uncorrected values tend to lie slightly above the line

while the corrected values lie slightly below but closer to

the line. Hence, there seems to be a small benefit to be

gained from correction. However, the relatively small

correction factors calculated for this data set suggest that it

should be possible to analyse even smaller particles by

increasing data acquisition times, even though this in-

creases drift, and/or even by using larger energy windows,

even though this increases instrumental blur, because cor-

rection is feasible.

Conclusions

It is possible to measure the radius and chemical compo-

sition of small Cu-rich particles embedded in a ferritic (Fe)

matrix using EFTEM. Greater measurement accuracy is

achieved by dividing a given analysis time to acquire

several pre-edge background fitting windows rather than to

divide the time for just two pre-edge windows. It is feasible

to determine appropriate factors to correct the degrading

influence of noise, drift and instrumental blurring. It is

experimentally possible to reveal particles with radii less

than one nanometre and to correct such small measured

radii, improving the accuracy of residual Fe (Cu) concen-

tration measurements.
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